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Executive Summary

Since 1979, the U.S. Fish and Wildlife Service has monitored environmental contaminants in
American peregrine falcon (Falco peregrinus anatum) and arctic peregrine falcon (F. p. tundrius)
eggs in interior and arctic Alaska. Monitoring goals were collection and analysis of a minimum of 10
eggs from each subspecies every five years. The results of the 1984 program were reported by
Ambrose et al. (1988a); this paper reports on 1988-95 analyses and compares data across the entire
time span (eggs from 89 F. p. anatum and 68 F. p. tundrius nests from interior and northern Alaska
collected between 1979 and 1995). In most cases a single egg was removed from each nest. More
than one egg was collected from 23 nests, and contaminant values for those eggs were averaged for
the nest. The majority of eggs analyzed were addled and collected during visits to band nestlings, but
fresh eggs were collected during incubation in 1984, 1989, and 1995. Multiple eggs were taken
from five females at intervals of two to four years. Four females with known wintering locations (via
satellite tracking) were sampled, as were 33 eggs from known or estimated-age females.

Organochlorine (OC) contaminants were measured from 1979-95, and data were adjusted for
moisture loss associated with development. Metals and trace elements (metals) were measured from
1988-95. We performed statistical analyses (hypothesis testing) for analytes that were consistently
detected and consistently measured over the study period (1979-95 for OCs; 1988-95 for metals).
These included p,p’-DDE, dieldrin, heptachlor epoxide, oxychlordane, and total PCBs; and copper,
iron, magnesium, mercury, and zinc. Summary statistics were generated for other analytes depending
upon the percent detections (geometric mean, range, and percent detection). We used general linear
models to test OC and metal concentrations for changes in contaminant concentrations over time,
differences between the American and arctic subspecies, differences between fresh and addled eggs,
differences between eggs from successful and unsuccessful nests, and the relationship of eggshell
thickness with DDE. There were significant declines over time for all OCs, although the trend was
weaker for total PCBs than for other OCs. Copper, iron, and zinc significantly declined over time;
magnesium and mercury did not. Because there were significant changes over time, a time factor
was incorporated into subsequent analyses. Dieldrin was significantly greater and p,p’-DDE was
significantly lower in F. p. tundrius compared to F. p. anatum over the entire study period; no other
contaminants were significantly different between subspecies, although F. p. anatum had generally
greater concentrations overall. Because of these differences, and because the subspecies are
managed separately, we separated subsequent analyses by subspecies.

There were no significant differences in OC concentrations between fresh and addled eggs, for either
subspecies. For F. p. anatum, iron and zinc were significantly greater, and magnesium was
significantly lower, in fresh eggs compared to addled. There were no differences in metal
concentrations between fresh and addled eggs for F. p. tundrius. For F. p. anatum, dieldrin,
oxychlordane, and total PCBs were significantly greater in eggs from unsuccessful nests compared to
successful nests, as were copper, iron, and mercury. There were no differences in eggs between
unsuccessful and successful nests for F. p. tundrius.

There were no significant differences in eggshell thickness between subspecies, between fresh and
addled eggs, or between eggs from successful compared to unsuccessful nests. There was no
significant increase in eggshell thickness over time, although thickness appeared to increase slightly.
Eggshell thickness was significantly negatively correlated with p,p’-DDE concentrations. Mean
eggshell thicknesses from 1991-95 were 12.0 and 10.6% thinner (. p. anatum and F. p. tundrius,
respectively) than pre-DDT era peregrine eggs.



Analytes that weren’t consistently measured or consistently detected over the study period (1979-95
for OCs, 1988-95 for metals), but that were found in >50% of the samples in which they were
analyzed, included beta-BHC, p,p’-DDD, p,p’-DDT, HCB, mirex, trans-nonachlor, manganese,
selenium, strontium, and tin. Concentrations of these and the ten analytes used for hypothesis testing
were compared to several published thresholds for reproductive effects, and the only contaminant
exceeding these thresholds at any time was mercury. Additionally, the percent of mercury
concentrations exceeding effect thresholds increased over time.

Although both OC and contaminant concentrations have decreased over time, evidence for
cumulative and single-contaminant reproductive effects were found. Further, mercury remains a
contaminant of continuing concern due to increasing concentrations and toxic reproductive effects.
Contaminant monitoring remains a necessary management tool because peregrine falcons are still
recovering from near extinction caused largely by environmental contaminants, and because they are
top predators that remain vulnerable to persistent and bioaccumulative compounds.
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Introduction

Three subspecies of peregrine falcons occur in Alaska. The Peale’s peregrine falcon (Falco
peregrinus pealei) inhabits the coastal areas of southeast, south-central and southwest Alaska. The
American peregrine falcon (. p. anatum) breeds in interior Alaska south of the Brooks Range, and
peregrine falcons breeding north of the Brooks Range and on the Seward Peninsula are considered
arctic peregrine falcons (£ p. tundrius) (White 1968). Both F. p. tundrius and F. p. anatum in
Alaska are highly migratory and winter from the southern United States south to Argentina (Ambrose
and Riddle 1988; Britten 1998; S. Ambrose and T. Swem, unpub. data). Population declines of
peregrine falcons at several locations including Alaska have been correlated with DDE
concentrations in their eggs, eggshell thinning, and hatching failure (Hickey and Anderson 1968,
Ratcliffe 1970, Cade et al. 1971, Peakall et al. 1975). American and arctic peregrine falcons in
interior and northern Alaska declined in the 1960s, stabilized in the mid-1970s, began to increase in
the late 1970s, and have stabilized or continue to increase (Ambrose et al. 1988b; Ambrose and
Swem, unpubl. data). In 1966, Cade et al. (1968) documented DDE and the parent compound DDT
in eggs and tissues of young and adult peregrine falcons from interior Alaska. Peakall et al. (1975)
reported that DDE residues in peregrine falcons from Alaska between 1969 and 1975 were greater
than critical reproductive thresholds. Ambrose et al. (1988a) noted declines in contaminant
concentrations and increased eggshell thickness in peregrine eggs compared to the earlier studies.
Because peregrines are top predators that were affected by and are vulnerable to the effects of
environmental contaminants, peregrine eggs have been monitored for DDE and other persistent
contaminants.

Organochlorine (OC) contaminants, including pesticides and polychlorinated biphenyls (PCBs), are
lipophilic, persistent in the environment, and bioaccumulate and biomagnify (Hoffman et al. 1995).
Toxic effects on birds include acute and chronic neurotoxicity, reproductive effects through
endocrine disruption, including eggshell thinning, and embryotoxicity. With some exceptions
(Loganathan and Kannan 1994), concentrations of OCs in biota are generally declining due to
numerous prohibitions on their use and production (Schmitt and Bunck 1995). However, due to their
toxicity, persistence, and continued use in some areas, OC compounds remain contaminants of
concern.

Metals and trace elements (metals) generally have fewer toxic effects in avian species compared to
persistent OCs, with important exceptions. Non-physiologically regulated metals such as lead and
mercury tend to be of greater toxicity than those that function as trace elements, such as iron and
zinc, although excessive trace or essential elements can be toxic. Mercury, which is a potent
neurotoxin, becomes bioavailable with the addition of organic molecules through bacterial
transformation and other processes (Eisler 1987, Thompson 1996). Organo-mercury (methyl-
mercury) is persistent, bioaccumulative, and can biomagnify, so toxic effects of this compound tend
to manifest at high trophic levels, similar to persistent OCs. Anthropogenic sources of metals are, in
general, declining in the Arctic (AMAP 1998) but local or regional contamination from mining,
incineration, or other industrial processes can result in release or mobilization of metals with
subsequent effects on local or regional populations (e.g., Blus et al. 1991). Mercury concentrations
in northern biota are not decreasing and may be increasing (e.g., Lockhart et al. 1995). Because of its
toxicity, bioavailability, and increasing concentrations, mercury remains a persistent contaminant of
concern.



The current report summarizes data from peregrine eggs collected from 1988-95 in Alaska and
compares these data to earlier collections summarized in Ambrose et al. (1988a), as both data sets
together comprise a continuous monitoring program for peregrine falcons in Alaska. Our objectives
were: (1) to determine concentrations of organochlorine (OC) contaminants and metals and trace
elements (metals) in eggs from American and arctic peregrine falcons breeding in Alaska; (2) to
assess trends (across time and between subspecies) of contaminant concentrations in eggs; and (3) to
examine effects of these contaminant concentrations on breeding success. We also provide
recommendations for future contaminant monitoring in peregrine falcon populations.

Methods

Egg collection procedures were similar to those described by Ambrose et al. (1988a). Unhatched,
addled eggs were collected when nests were visited to count and band nestlings (no eggs were
collected in 1981, 1985, and 1992). Fresh eggs were collected in 1984, 1989 and 1995 during
occupancy surveys when adults were incubating. Successful nests had > 1 nestling, usually between
7 and 28 days old, at the latter nest visit, and unsuccessful nests had no chicks present. Whole eggs
were wrapped in foil, cushioned for transport, and refrigerated as much as possible prior to removal
of contents. Contents were removed by scoring the eggshell at the equator and placing contents in a
chemically-clean jar (I-Chem or equivalent).

Eggshell thickness (shell plus membranes) was reported as an average of three measurements taken
on the equator of each egg with a micrometer graduated in units of 0.01 mm. Eggshell thickness
measurements came only from shells of whole eggs, collected either as fresh or addled eggs; no
measurements of eggshell fragments were included. If membranes were missing, we added 0.069
mm (Court et al. 1990). To assess percent of shell thinning, we compared thickness to a pre-1947
thickness of 0.360 £ 0.007 mm (95% C.L.) for 53 peregrine eggs from arctic and subarctic Alaska
(Anderson and Hickey 1972).

Analytical Chemistry

Organochlorines were measured from 1979-95. Metals were measured from 1988-95. Analytes
measured and limits of detection (LODs) are summarized in Appendix A. Total PCBs were
calculated as an Aroclor sum, and mercury was measured as elemental mercury. Eggs collected prior
to 1988 were analyzed at Patuxent Wildlife Research Center. Eggs collected in 1988-95 were
analyzed at Texas A & M University, except for eggs collected in 1989 and 1991 which were
analyzed at Mississippi State University. Detailed analytical methods are available from the
Patuxent Analytical Control Facility (PACF), Patuxent Wildlife Research Center, U.S. Fish and
Wildlife Service, Laurel, MD. Quality assurance and quality control (QA/QC) procedures followed
PACEF contractual standards. For eggs collected after 1993, additional QA/QC was provided by U.S.
Fish and Wildlife Service, Northern Alaska Ecological Services Environmental Contaminants
biologists (E. Synder-Conn and K. Mueller). Acceptance criteria were spike recoveries of 80-120%,
Standard Reference Material value within + 3 SD of the certified value, relative percent difference of
duplicate samples within + 20%, and analysis of matrix blanks. Additionally, 10% of positive
samples were confirmed by Gas Chromatography/Mass Spectrometry. Analytes that failed to meet
QA/QC acceptance criteria were excluded from data summaries and analysis.



Data Analysis

We used a variety of statistical tests, depending upon the hypothesis tested. We used multivariate
tests whenever supported by the data, since they reduce the increased experiment-wise error rate
associated with numerous univariate tests, and may also discern patterns not evident in univariate
data (Weis and Muir 1997, Sparks et al. 1999). When possible, we used parametric statistical tests,
primarily general linear models. General linear models are a broad family of tests used for univariate
and multivariate Analysis of Variance (ANOVA), Analysis of Covariance (ANCOVA), and multiple
regression, among others (SPSS 1998). Non-parametric tests were used when: 1) contaminants data
from any group had > 50 % of data less than the LOD; and 2) log-transformation did not correct non-
normality or unequal variance. All statistical analyses were done with SYSTAT 8.0 (SPSS 1998);
unless otherwise stated, o = 0.05.

We adjusted OC contaminant values for changes in moisture content (Stickel et al. 1973); adjusted
residues are reported as mg/kg adjusted wet weight (ww). Metals are reported in mg/kg dry weight
(dw) and were not adjusted. Data were not corrected for percent recoveries.

We accounted for different detection limits, and differences in lists of measured analytes, over the
study period. It is not appropriate to combine data generated with differing detection limits except
when all data are above the highest detection limit, because non-detects at a high detection limit may
have been quantifiable with a lower detection limit. Therefore, we tested hypotheses on only those
analytes that were consistently detected (90% of all data above the LOD) and consistently measured
throughout the entire study period. Non-detections for these analytes only were substituted with %2
the LOD for analysis purposes, since a small number of such substitutions is unlikely to affect
estimation of summary statistics (Gibbons 1994). Organochlorines that were consistently detected
and measured (1979-95) included p,p’-DDE, dieldrin, heptachlor epoxide, oxychlordane, and total
PCBs. Metals that were consistently detected and consistently measured (1988-95) included copper
(Cu), iron (Fe), magnesium (Mg), mercury (Hg), and zinc (Zn). Peakall et al. (1990) listed several
contaminants likely to be of toxicological concern. Contaminants that we used to test hypotheses
included those listed in Peakall et al. (1990) (p,p’-DDE, PCBs, dieldrin, heptachlor epoxide,
oychlordane, and mercury), with the exception of hexachlorobenzene, which was not consistently
measured throughout the entire study period.

For analytes that were not consistently detected and measured from 1979-95, summary statistics were
calculated for 1988-95 only, since earlier years were presented in Ambrose et al. (1988a). Analytes
with > 50% above the highest detection limit for each subspecies were summarized with geometric
means (with non-detects substituted at 'z the detection limit), ranges, and percent detections.
Analytes with < 50% of data above the detection limit were summarized with percent detections.
Since detection limits varied even from 1988-95, we calculated percent detections for OC pesticides
using the nominal OC detection limit for the majority of samples from 1988-95 (0.01 mg/kg ww,
Appendix A). For metals, we used the highest of the variable detection limits for each analyte
(Appendix A).

Although eggs were collected from 1979-95 (excluding 1981, 1985, and 1992), there were very low
sample sizes in some years. Data were therefore grouped prior to data analysis, into year groups
representing the early 1980's, late 1980's, and early 1990's (Table 1). Additionally, although multiple



eggs collected from the same clutch were subjected to individual chemical analyses, their
contaminant concentrations could not be considered independent and were therefore averaged for use
in statistical analyses. Also, we corroborated that intra-clutch variation was less than inter-clutch
variation by comparing the median intra-clutch range to a bootstrapped set of 500 randomly selected
inter-clutch ranges generated for each of the statistically analyzed OCs and mercury. If the intra-
clutch ranges were less than 75% of the inter-clutch ranges (i.e., corresponding to the 25™ or lower
percentile), we were satisfied that intra-clutch ranges were substantially less than inter-clutch ranges
and that averaging of residue data from multiple eggs in one clutch was justified.

Table 1. Years in which peregrine eggs were collected in Alaska, and year group for data analysis.
Organochlorines were measured in all years; metals were measured from 1988-95. Samples were
single eggs from one nest, or, if more than one egg was collected, average contaminant
concentrations for all eggs in a nest. Sample sizes are in parentheses.

Subspecies
Year of collection (n) Year group for data analysis (n)

American peregrine falcon (F. p. anatum)
1979 (1), 1980 (2), 1982 (6), 1979-84 (31)
1983 (6), 1984 (16)

1986 (1), 1987 (1), 1988 (5), 1986-90 (26)
1989 (15), 1990 (4)

1991 (11), 1993 (7), 1994 (3), 1991-95 (32)
1995 (11)

Arctic peregrine falcon (F. p. tundrius)
1979 (4), 1980 (1), 1982 (3), 1979-84 (19)
1983 (2), 1984 (9)

1988 (5), 1989 (19), 1990 (5) 1986-90 (29)
1991 (7), 1993 (4), 1994 (1), 1991-95 (20)
1995 (8)

Specific hypotheses and statistical tests are summarized below. Analyses were performed in the
order listed so that significant results from broad questions could be incorporated into subsequent
specific analyses. We analyzed OCs and metals separately.

To test whether contaminant concentrations changed over time, and whether contaminant
concentrations differed between the F. p. anatum and F. p. tundrius subspecies, we used a
multivariate general linear model (analogous to two-way multivariate ANOVA design) with year
group and subspecies as the main factors and contaminant concentrations as the response variables.
If the overall multivariate model showed significant differences among year groups in contaminant
concentrations, Bonferroni-adjusted post-hoc comparisons were performed on those analytes with
significant (p < 0.05) univariate F-statistics to determine which year groups were significantly



different from each other. Post-hoc testing on significant analytes was not required for the
subspecies factor, since there were only two levels (F. p. anatum and F. p. tundrius). Significant
differences among the year groups resulted in incorporation of a time factor in subsequent analysis.
Significant differences among subspecies resulted in separation of subsequent analyses by
subspecies.

We compared contaminant concentrations between fresh (collected at incubation) and addled
(collected at banding) eggs using multivariate general linear models (analogous to two-way
multivariate ANOVA design) with year group and status (addled or fresh) as factors and contaminant
concentrations as response variables. Fresh eggs were collected in 1984, 1989, and 1995, so this
analysis was limited to those years.

We evaluated whether contaminant concentrations in eggs were related to breeding success with two
methods. First, we statistically compared contaminant concentrations among successful (> 1 chick at
banding) and unsuccessful (0 chicks at banding) nests, using general linear models (analogous to
two-way multivariate ANOVA design) with year group and nest success as factors and contaminant
concentrations as response variables. We used breeding success, rather than number of nestlings,
because in some years a fresh egg was collected from some nests, introducing potential and unknown
bias into analyses involving numbers of eggs or nestlings. We also compared geometric mean
contaminant concentrations to published effect thresholds for each subspecies and each year group
and calculated the percent of eggs exceeding the thresholds.

We explored the relationships between eggshell thickness, contaminant concentrations, and time,
using a general linear model (analogous to a multivariate ANCOV A design) with year group as a
factor, log-transformed p,p’-DDE concentrations as a covariate, and eggshell thickness as the
response variable. We also used general linear models (analogous to a t-test design) to compare
eggshell thickness between subspecies, between addled and fresh eggs within subspecies, and
between successful and unsuccessful nests within subspecies.

We had data from banded females with known ages (coded leg bands applied as nestlings, or age at
banding estimated to be after second year), previous egg collections, or known wintering areas
(satellite tags), and evaluated whether contaminant concentrations in eggs were related to these
factors. Because variance in contaminant concentrations increased with age and was not corrected
using a log-transform, we used non-parametric Spearman rank correlations to test if female age (yr)
was correlated with contaminant concentrations. We also tabulated data for eggs collected from the
same female over time, with gaps of two to four years between collections. Eggs from four 1994
satellite-tagged female American peregrine falcons breeding along the Yukon River in Alaska
(Britten 1998) were collected in 1995. Egg contaminants data were examined for patterns relative to
migration routes and wintering areas in conjunction with a larger study (Britten 1998). Habitats were
assigned to wintering locations (average latitude and longitude of satellite locations) using World
Wildlife Fund’s ecoregion identification (World Wildlife Fund 1998).

Results

Summary statistics (geometric mean, range, and percent detections) for analytes that were not
statistically analyzed are presented in Appendix B (analytes with > 90% of samples above the
detection limit), Appendix C (analytes with > 50% but less than 90% of samples above the detection
limit) and Appendix D (analytes with < 50% of samples above the detection limit). Sample sizes for



each year group and subspecies are presented in Table 1. Residue levels of OCs and metals in
individual eggs are presented in Appendix E.

Mirex and selenium were detected in 100% of samples during 1988-95. Beta-BHC, p,p’-DDD, p,p’-
DDT, HCB, Mirex, trans-nonachlor, mangenese, selenium, strontium, and tin were detected in
greater than 50% of samples for both subspecies (Appendix C). Alpha-BHC, gamma-BHC, alpha-
chlordane, gamma-chlordane, o,p’-DDD, o0,p’-DDE, o,p’-DDT, endosulfan II, endrin, aluminum,
barium, beryllium, boron, cadmium, chromium, lead, molybdenum, nickel, and vanadium were
detected in fewer than 50% of samples for both subspecies (Appendix D). Aldrin, delta-BHC,
heptachlor, antimony, arsenic, cobalt, silver, and thallium were not detected in any sample.

Use of average clutch values when multiple eggs from one clutch were measured was justified
because intra-clutch variation was much lower than inter-clutch variation. Median intra-clutch
ranges were all lower than the 25™ percentile of inter-clutch ranges. Specifically, intra-clutch ranges
for p,p’-DDE, dieldrin, heptachlor epoxide, oxychlordane, total PCBs (n=23), and mercury (n=13)
fell below the 11th, 12th, 8th, 7th, 17th, and 25th percentiles, respectively, of 500 inter-clutch ranges
randomly generated for each contaminant.

Time and Subspecies Differences

There were significant differences among year groups for all OC contaminants (Table 2), and
decreasing concentrations over time were indicated by either 1986-90 or 1991-95 year groups, or
both, being significantly lower than 1979-84 (Fig. 1a-e). The exception was total PCBs, where, in
spite of a significant univariate F-statistic, no year group was significantly different from any other
(Fig. 1e). There were also significant differences between subspecies (Table 2). Dieldrin
concentrations were significantly greater and p,p’-DDE concentrations were significantly less in F. p.
tundrius eggs compared to F. p. anatum (Fig. 1a, b). Heptachlor epoxide, oxychlordane, and total
PCBs were not significantly different between subspecies (Table 2).

Copper, iron, and zinc were significantly lower in 1991-95 compared to 1988-90 (Table 3, Fig. 2a, b,
e). Mercury and magnesium were not significantly different between year groups (Table 3), although
mercury may be increasing, at least in F. p. anatum (Fig. 2d). There were no significant differences
between subspecies in metals (Table 3, Fig. 2a-e).



Table 2. Results of two-way multivariate ANOVA that tested whether organochlorine contaminant
concentrations in peregrine eggs from Alaska changed over time and whether they differed between
the American (Falco peregrinus anatum) and arctic (F. p. tundrius) subspecies. Differences among
year groups or subspecies were indicated by significant multivariate statistics (P < 0.05); significant
response variables (i.e., those contributing to the significant factor differences) were indicated by

significant univariate statistics (P < 0.05) and are noted with an asterisk.

Factor Multivariate
(Levels) ' Statistics Response Variables Univariate Statistics
Year Group  Wilke’s A = 0.482 p.p’-DDE * F, |5,=40.385, P <0.001
(1979-84, F 19,20, =12.838 dieldrin *  F, 5,=16.645, P <0.001
1988-90, P <0.001 heptachlor epoxide * F , 5, =36.639, P <0.001
1991-95) oxychlordane * F, 5,=24.182, P <0.001
total PCBs *  F, 5, = 5.448, P =0.005
Subspecies ~ Wilke’s A =0.859 p.p’-DDE * F, 5, =5.120, P =0.025
(F. p. F 5 4 =4.788 dieldrin *  F, 5,=8.566, P =0.004
anatum, P <0.001 heptachlor epoxide F | 150=0.054,P=0.817
F.p. oxychlordane F | 15=0.028, P =0.868
tundrius) total PCBs F | 150=1419,P=0.235

! Mean values displayed in Fig. 1.

Table 3. Results of two-way multivariate ANOVA that tested whether metal concentrations in
peregrine eggs from Alaska changed over time and whether they differed between the American

(Falco peregrinus anatum) and arctic (F. p. tundrius) subspecies. Differences among year groups or

subspecies were indicated by significant multivariate statistics (P < 0.05); significant response
variables (i.e., those contributing to the significant factor differences) were indicated by significant
univariate statistics (P < 0.05) and are noted with an asterisk.

Factor Multivariate
(Levels)' Statistics Response Variables Univariate Statistics
Year Group  Wilke’s A =0.724 copper * F, 4 =11.383,P=0.001
(1988-90, F 5 45=6.476 iron * F, 4 =22.825,P <0.001
1991-95) P <0.001 magnesium  F | ;= 0.909, P =0.343
mercury Fig= 0319,P=0.573
zinc*  F ¢ =24.995,P<0.001
Subspecies ~ Wilke’s A =0.920 copper n/a’
(F. p. F5¢5=1.478 iron n/a
anatum, P=0.205 magnesium n/a
F.p. mercury n/a
tundrius) zinc n/a

! Mean values displayed in Fig. 2.

2

7

n/a = not applicable due to non-significant multivariate statistic.
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Figure 1. Mean organochlorine contaminant concentrations in peregrine eggs from Alaska
over three time periods. Subspecies are denoted by separate lines (4 = American, F. p.
anatum, @ = arctic, F. p. tundrius). There were significant differences between subspecies
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subspecies factors).
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Addled and Fresh Eggs

Analyses of addled and fresh eggs were performed separately on each subspecies, with year as a
factor to account for decreasing concentrations over time. There were significant decreases in OC
concentrations among the years tested (1984, 1989, and 1995) for both subspecies (Table 4, Fig. 3a-
e), as expected from the previous analysis (Table 2), but no significant differences between addled
(F. p. anatum n=20, F. p. tundrius n=12) and fresh (F. p. anatum n=22, F. p. tundrius n=24) eggs for
either subspecies (Table 4).

There were no significant differences in metals between years (1989 and 1995) for either subspecies
(Table 5), although the more powerful (larger sample size) previous analysis indicated decreases over
time for some metals (Table 3). For F. p. anatum, iron and zinc were significantly greater and
magnesium was significantly lower in fresh (n=12) eggs compared to addled (n=14), but there were
no significant differences in copper and mercury (Table 5, Fig. 4a-e). There were no significant
differences in metal concentrations between fresh (n=16) and addled (n=11) eggs for F. p. tundrius
(Table 5, Fig. 4a-e).
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Table 4. Results of two-way multivariate ANOV As that tested whether organochlorine contaminant
concentrations differed between fresh (collected prior to expected hatch date) and addled (collected
after expected hatch date) peregrine eggs from Alaska. Differences among years or status were
indicated by significant multivariate statistics (P < 0.05); significant response variables (i.e., those
contributing to the significant factor differences) were indicated by significant univariate statistics (P
<=10.05) and are noted with an asterisk.

Factor Multivariate Response Variables Univariate Statistics
(Levels)' Statistics

American subspecies (Falco peregrinus anatum)

Year Wilke’s A =0.331 p.p’-DDE * F, 3 =17.379,P <0.001
(1984, F 10124 =9.158 dieldrin * F, ;3= 3.866, P =0.030
1989, P <0.001 heptachlor epoxide * F , 3, =14.283, P <0.001
1995) oxychlordane * F, ;= 5.411,P=0.009
total PCBs F, 3= 1.712,P=0.194
Status Wilke’s A = 0.890 p.p-DDE  n/a’
(Addled, Fs3,=0.844 dieldrin n/a
Fresh) P=0.528 heptachlor epoxide n/a

oxychlordane n/a
total PCBs n/a

Arctic subspecies (F. p. tundrius)

Year Wilke’s A = 0.208 p,p’-DDE * F, ;,=24.178,P <0.001
(1984, F g, 56 = 0.666 dieldrin * F, ;= 5.711,P=0.008
1989, P <0.001 heptachlor epoxide * F, 3, = 5.633, P =0.008
1995) oxychlordane * F, 3, =10.599, P <0.001
total PCBs F, ;= 3.054,P=0.061
Status Wilke’s A =0.913 p.p’-DDE  n/a?’
(Addled, Fs5=1.128 dieldrin  n/a
Fresh) P=10.356 heptachlor epoxide n/a

oxychlordane n/a
total PCBs n/a

! Mean values displayed in Fig. 3.
' n/a = not applicable due to non-significant multivariate statistic.
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Figure 3. Mean organochlorine (OC) contaminant concentrations in addled and fresh
American (F. p. anatum) and arctic (F. p. tundrius) peregrine falcon eggs from Alaska,
collected in 1984, 1989, and 1995. There were no significant differences between addled

and fresh eggs (two-way MANOVA with time and egg status factors).
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Table 5. Results of two-way multivariate ANOV As that tested whether metal and trace
element contaminant concentrations differed between fresh (collected prior to expected hatch
date) and addled (collected after expected hatch date) peregrine eggs from Alaska.
Differences among years or status were indicated by significant multivariate statistics (P <
0.05); significant response variables (i.e., those contributing to the significant factor
differences) were indicated by significant univariate statistics (P < 0.05) and are noted with
an asterisk.

Factor Multivariate Response
(Levels)' Statistics Variables Univariate Statistics

American subspecies (Falco peregrinus anatum)

Year Wilke’s A = 0.692 copper  n/a’
(1989, Fs,90=1.688 iron n/a
1995) P=0.186 magnesium  n/a
mercury  n/a
zinc n/a
Status Wilke’s A =0.428 copper F 3 =0.452,P=0.508
(Addled, Fs1,=5.070 iron* F,,,=5722,P=0.025
Fresh) P =10.004 magnesium *  F, ,,=6.573,P=0.017
mercury  F ,;=0.165,P=0.688
zinc* F,,;=4.924,P=0.037

Arctic subspecies (F. p. tundrius)

Year Wilke’s A = 0.799 copper n/a
(1989, F 55 =1.007 iron n/a
1995) P=0.439 magnesium n/a
mercury n/a

zinc n/a

Status Wilke’s A = 0.758 copper n/a
(Addled, Fs0=1274 iron n/a
Fresh) P=0.314 magnesium n/a
mercury n/a

zinc n/a

! Mean values displayed in Fig. 4.
? n/a = not applicable due to non-significant multivariate statistic.
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Effects on Breeding Success

Analyses on the effects of contaminants on breeding success were performed separately on each
subspecies, with year group as a factor to account for decreasing concentrations over time. There
were significant differences in OC concentrations among year groups (Table 6) for both subspecies,
as expected (Table 2). In F. p. anatum, dieldrin, oxychlordane, and total PCB concentrations were
significantly greater in unsuccessful nests (n=24) compared to successful (n=63), while p,p’-DDE
and heptachlor epoxide were not significantly different (Fig. 5a-e). There were no significant
differences in OC concentrations in F. p. tundrius eggs from successful (n=40) and unsuccessful
(n=28) nests (Table 6, Fig. Sa-¢).

There were significant differences in iron and zinc for both subspecies, and in copper concentrations
for F. p. anatum, among year groups (Table 7), as expected (Table 3). In F. p. anatum, copper, iron,
and mercury concentrations were significantly greater in unsuccessful (n=13) nests compared to
successful (n=38), while magnesium and zinc were not significantly different (Fig. 6a-e). There were
no significant differences in metal concentrations in F. p. tundrius eggs from successful (n=24) and
unsuccessful (n=17) nests (Table 7, Fig. 6a-¢).

Geometric mean p,p’-DDE concentrations for both subspecies were below the 15-20 mg/kg threshold
associated with 20% eggshell thinning specified by Peakall et al. (1990) for all time periods. This
threshold was not exceeded by individual F. p. anatum or F. p. tundrius eggs in 1991-95. Critical
dieldrin levels in peregrine eggs range from 1- 4 mg/kg (Peakall et al. 1990), which was greater than
geometric mean dieldrin concentrations for all time periods, and there were no exceedances during
1991-95. Geometric mean heptachlor epoxide concentrations never exceeded 1.5 mg/kg, a level
considered to be critical for producing adverse reproductive effects in peregrines by Peakall et al.
(1990) based on Henny et al.’s (1983) assessment of American kestrels (Falco sparverius), and there
were no exceedances of this threshold value in 1991-95.

Thresholds for total PCBs are somewhat problematic because PCB toxicity and effects are congener-
specific. Peakall et al. (1990) suggested 40 mg/kg total PCBs for peregrines, and other laboratory
studies on a variety of birds suggest different total PCB thresholds (1 to 105 mg/kg, depending upon
species and effect measured; Hoffman et al. 1996). PCB congeners were not measured for this study,
but mean and individual concentrations of total PCBs in all time periods did not exceed the 40 mg/kg
threshold identified by Peakall et al. (1990), although there were some exceedences for lower
threshold values.

Mercury threshold concentrations were given as between 0.5 and 1.0 mg/kg wet weight for
peregrines (Peakall et al. 1990), other raptors (Wiemeyer et al. 1993, Bowerman et al. 1995), and
birds in general (Thompson 1996). We calculated mean wet weight concentrations using percent
moisture from each egg to compare to these thresholds. Mean mercury concentrations (mg/kg ww)
were 0.328 and 0.391 (1988-90), and 0.526 and 0.389 (1991 - 95) for F. p. anatum and F. p. tundrius,
respectively. The number (%) of eggs exceeding the 0.5 mg/kg threshold were 3/22 (13%) and 2/23
(9%) in 1988-90, and 10/33 (30%) and 6/20 (30%) in 1991-95, for F. p. anatum and F. p. tundrius,
respectively.

There were no exceedences for analytes that were not statistically analyzed. The highest

concentrations of HCB (Appendix C) did not exceed Peakall et al.’s (1990) toxic threshold estimate
of 4 mg/kg in eggs. The highest concentrations of beta-BHC in this study (Appendix C) were < 5.5
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mg/kg, the concentration found in an egg from an apparently successful American kestrel nest
(Henny et al. 1983). Gamma-BHC (lindane) was detected in only one sample (Appendix D). Mirex
was detected in 100% of eggs measured from 1988-95, but at concentrations below those associated
with reproductive effects in chickens (255-450 mg/kg ww) (Wiemeyer 1996). Selenium was
measured only in 1991 and 1993-95, but was detected in 100% of eggs from those years. However,
geometric mean selenium concentrations (range), after conversion to wet weight using percent
moisture from each egg for comparison with published thresholds, were 0.480 (0.159 - 0.941) mg/kg
ww for F. p. anatum and 0.415 (0.243 - 0.612) mg/kg ww for F. p. tundrius. These were below the
general avian embryotoxic threshold suggested by Heinz (1996) of 3 mg/kg ww in eggs.
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Table 6. Results of two-way multivariate ANOV As that tested whether organochlorine contaminant
concentrations differed between peregrine eggs from successful (> 1 chick at banding) and
unsuccessful (0 chicks at banding) nests in Alaska. Differences among year groups or nest success
were indicated by significant multivariate statistics (P < 0.05); significant response variables (i.e.,
those contributing to the significant factor differences) were indicated by significant univariate
statistics (P < 0.05) and are noted with an asterisk.

Factor Multivariate Response Variables Univariate Statistics
(Levels)' Statistics

American subspecies (Falco peregrinus anatum)

Year Group  Wilke’s A = 0.490 p.p’-DDE * F, ¢ =40.385, P <0.001
(1979-84, F 1o 155=6.771 dieldrin *  F, 4, =16.645, P <0.001
1988-90, P <0.001 heptachlor epoxide * F , ;= 36.639, P <0.001
1991-95) oxychlordane * F , 4, =24.182, P <0.001
total PCBs  F, ¢ = 5.448,P=0.053

Nest Wilke’s A = 0.812 p.p’-DDE F, 4 =5.120,P =0.801
Success F s 59=3.659 dieldrin * F | 4, = 8.566, P =0.003
(Yes, No) P =0.005 heptachlor epoxide F 4 =0.054,P=0.814
oxychlordane * F, 4; =0.028, P =0.046

total PCBs * F | 4, =1.419,P=0.012

Arctic subspecies (F. p. tundrius)

Year Group  Wilke’s A =0.371 p.p’-DDE* F,(=17.878,P <0.001
(1979-84, F 10,120 =7.697 dieldrin*  F, o, = 7.920, P =0.001
1988-90, P <0.001 heptachlor epoxide * F, , =15.310, P <0.001
1991-95) oxychlordane * F, = 8.695,P <0.001
total PCBs * F, o, = 4.312,P=0.018
Nest Wilke’s A = 0.861 p.p-DDE  n/a?
Success F 5 4 =1.930 dieldrin n/a
(Yes, No) P=0.103 heptachlor epoxide  n/a

oxychlordane n/a
total PCBs n/a

! Mean values displayed in Fig. 5.
' n/a = not applicable due to non-significant multivariate statistic.
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Figure 5. Mean organochlorine (OC) concentrations in American (F. p. anatum) and arctic
(F. p. tundrius) peregrine falcon eggs from successful (> 1 chick at banding) and
unsuccessful (0 chicks at banding) nests in Alaska, over three time periods. An asterisk
following the subspecies label indicates significant differences between eggs from successful
and unsuccessful nests (two-way MANOV A with time and success as factors).
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Table 7. Results of two-way multivariate ANOV As that tested whether metal and trace element
concentrations differed between peregrine eggs from successful (> 1 chick at banding) and
unsuccessful (0 chicks at banding) nests in Alaska. Differences between year groups or nest success
were indicated by significant multivariate statistics (P < 0.05); significant response variables (i.e.,
those contributing to the significant factor differences) were indicated by significant univariate

statistics (P < 0.05) and are noted with an asterisk.

Factor Multivariate Response Univariate Statistics
(Levels)' Statistics Variables
American subspecies (Falco peregrinus anatum)
Year Group Wilke’s A =0.563 copper * F, ,x=18.502,P <0.001
(1988-90, Fs . =6.841 iron* F, ,,=18.646,P <0.001
1991-95) P <0.001 magnesium  F, 5= 0.754,P =0.389
mercury F, = 2.130,P=0.151
zinc* F | ,5=20.448,P <0.001
Nest Wilke’s A = 0.689 copper * F ;x=10.349, P =0.002
Success F s 4,=3.963 iron* F, = 5932,P=0.019
(Yes, No) P =0.005 magnesium  F, .= 0.179,P=0.674
mercury *  F, = 6.498,P=0.014
zinc  F 4= 2.732,P=0.105
Arctic subspecies (F. p. tundrius)
Year Group Wilke’s A =0.717 copper F 3= 0.696,P=0.409
(1988-90, Fs3,=2.685 iron* F, = 7.234,P=0.011
1991-95) P=0.038 magnesium  F, 3= 0.252,P=0.618
mercury  F | 5= 0.299,P=0.588
zinc* F | 3 =11.798,P=0.001
Nest Wilke’s A = 0.920 copper  n/a’
Success F;3,=0.592 iron n/a
(Yes, No) P=0.706 magnesium  n/a
mercury n/a
zine n/a

! Mean values displayed in Fig. 6.
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Figure 6. Mean metal and trace element concentrations in American (F. p. anatum) and
arctic (F. p. tundrius) peregrine falcon eggs from successful (> 1 chick at banding) and
unsuccessful (0 chicks at banding) nests in Alaska, over three time periods. An asterisk

following the subspecies label indicates significant differences between eggs from successful

and unsuccessful nests (two-way MANOV A with time and success as factors).
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Eggshell Thickness

Eggshell thickness was significantly negatively correlated with p,p’-DDE in both subspecies using
ANCOVA with year group as a factor and (log)p,p’-DDE as a covariate (F. p. anatum p,p’-DDE F, 4,
=7.002, P =0.010; F. p. tundrius p,p’-DDE F, 4, = 5.897, P =0.018) (Fig. 7a,b). Eggshell
thickness was not significantly different between subspecies (ANOVA, F, |5; = 0.275, P = 0.601),
between successful and unsuccessful nests for either subspecies (ANOVA, F. p. anatum F, ¢, =
1.153, P =0.286; F. p. tundrius F, o =3.178, P = 0.079), or between fresh and addled eggs for either
subspecies (ANOVA, F. p. anatum F, 3s=0.019, P = 0.892; F. p. tundrius F, 4 =1.203, P =0.277).
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Figure 7. Relationships between eggshell thickness and p,p’-DDE in American (F. p.
anatum) and arctic (F. p. tundrius) peregrine falcon eggs from Alaska, 1979-95. Significant
negative correlations were noted for each subspecies (ANCOVA with year as factor and p,p’-
DDE as covariate).

Eggshell thickness for both F. p. anatum and F. p. tundrius increased slightly but not significantly
over time (ANCOVA with year group as factor and (log)p,p’-DDE as a covariate, F. p. anatum year
group F , g3 =1.173, P = 0.315; F. p. tundrius year group F , ,, = 0.206, P = 0.814). Based on a pre-
DDT thickness of 0.360 mm for interior and northern Alaska peregrine falcon eggs (Anderson and
Hickey 1972), thinning in F. p. anatum eggs averaged 13.1% (0.313 mm) in 1979-84 (n=31), 13.9%
(0.310 mm) in 1988-90 (n=24), and 11.8% (0.317 mm) in 1991-95 (n=32). Thinning in F. p.
tundrius eggs averaged 14.4% (0.308 mm) in 1979-84 (n=19), 12.0% (0.317 mm) in 1988-90 (n=29),
and 10.6% (0.322 mm) in 1990-95 (n=20) (Fig. 8).
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Figure 8. Mean (+ SE) eggshell thickness in American (F. p. anatum) and arctic (F. p.
tundrius) peregrine eggs from Alaska, 1979-95, compared to an estimated pre-DDT era mean
(shaded bar) of 0.360 (+ 95% C.I.) mm (Anderson and Hickey 1972).

Known Females

There were 24 eggs from F. p. anatum females of known or estimated age, and 9 from F. p. tundrius
of known or estimated age. There was no statistically significant relationship between female age
and contaminant concentrations for either subspecies (non-parametric Spearman rank correlations, all
P> 0.05). We used a non-parametric analysis because variance was not stabilized with a log-
transformation; consequently, this analysis did not account for generally declining concentrations
over time or for multivariate responses.

We examined the data for eggs taken from the same females over time, although data are too few to
do more than speculate. There were five females sampled twice during the study (2 to 5 years apart),
with one of those sampled three times. Although contaminant concentrations varied considerably
between females (two-fold in some cases), eggs sampled later in a female’s life generally had lower
concentrations, following the generally declining contaminant trends of this population. However,
not all concentrations declined. For example, p,p’-DDE, diedrin, and heptachlor expoxide decreased
in the second egg sampled in five of six comparisons, while oxychlordane and total PCBs decreased
in three of six comparisons (Table 8). However, the female sampled three times had declining
contaminant concentrations in her second and third eggs compared to her first, but not in her third
egg compared to her second, except for total PCBs (Table 8).

Wintering locations for satellite-tagged female peregrines were southeastern Mexico (2), central El
Salvador (1), and eastern Brazil (1) (Britten 1998). During the non-breeding months, falcons tended
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to stay in one location. The two females that wintered in southeastern Mexico were about 4.0 km
apart and in the same mangrove habitat. In Central America, the wintering habitat was montane
forests; and in eastern Brazil, heath forest. Differences in concentrations of the 10 analytes subjected
to statistical analyses were no less in the two eggs of the two females that wintered in the same
habitat compared to differences among all four females; there were no clear patterns associated with
similar wintering areas. The sample size is very small, however, and more data from known-
wintering area females are needed to assess exposure scenarios on the wintering grounds.
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Table 8. Environmental contaminant concentrations in American (Falco peregrinus anatum)

(Females 1-4) and arctic (F. p. tundrius) (Female 5) peregrine falcon eggs in Alaska, taken from the
same females over time. Decrease or increase indicates whether concentrations were less or greater
than concentrations in the egg sampled previously.

Year Decrease () or
Female 1984 1988 1989 1990 1991 increase ( /)
p.p’-DDE '

1 22.330 17.011 "

2 7.937 6.227 6.381 N, 7
3 9.561 8.865 "

4 21.086 12.583 "

5 2.870 2.096 Y

dieldrin '

1 0.240 0.027 "

2 0.338 0.073 0.127 N, 7
3 0.096 0.051 "

4 0.125 0.039 "

5 0.312 0.193 Y

heptachlor epoxide '

1 0.215 0.206 "

2 0.730 0.356 0.565 N, 7
3 0.261 "

4 0.414 0.149 "

5 0.158 0.029 Y

oxychlordane '

1 0.103 0.143 ”

2 0.230 0.105 0.125 N, 7
3 0.165 0.059 "

4 0.195 0.157 "

5 0.100 0.123 ”

total PCBs '

1 2.147 3.671 ”

2 2.689 1.860 1.318 N\
3 1.304 2.572 ”

4 3.124 2.674 "

5 4.992 2.228 Y

mercury *
2 1.990 1.060 1.336 el
! Adjusted for changes associated with development (Stickel et al. 1973), mg/kg wet weight

2

mg/kg dry weight
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Discussion
Contaminant Concentrations
Time Trends

With a few exceptions, contaminants of concern in eggs from peregrine falcon nesting in Alaska have
substantially decreased since North American populations crashed in the 1960’s. The downward
trend coincides with increases in breeding populations, including those breeding in Alaska (Ambrose
et al. 1988b), and with global curtailment of persistent OC use. However, individual variation in egg
contaminant concentrations is noteworthy (e.g., Henny et al. 1994), resulting from variation in female
body burden at laying. Individual peregrines may still be exposed to high concentrations of OC
pesticides on the wintering and breeding grounds, and during migration (Henny et al. 1982, Fyfe et
al. 1991, Banasch et al. 1992, Johnstone et al. 1996).

We noted that the downward trend in total PCBs is not as steep as for other OC pesticides tested
(p,p’-DDE, dieldrin, heptachlor epoxide, and oxychlordane), which probably reflects relatively more
widespread use and contamination. Other peregrine studies have noted that PCB concentrations have
not decreased as clearly as OC pesticide concentrations in peregrine eggs (Peakall et al. 1990), if at
all (Newton et al. 1989, Johnstone et al. 1996). In other biota, worldwide concentrations of PCBs
have not declined to the extent other OC compounds have (Loganathan and Kannan 1994). Although
the manufacture, processing, and use (except in closed systems) of PCBs was banned in the U.S. in
1979, PCBs are globally distributed and releases still occur (Eisler and Belisle 1996).

As a top predator, the peregrine remains vulnerable to persistent bioaccumulative contaminants, as
indicated by the lack of a decrease or a potential increase (Fig. 2d) in mercury concentrations in eggs.
Mercury concentrations have increased in the arctic environment and biota (Jensen et al. 1997),
reflecting mobilization of the compound through industrial processes such as mining and waste
incineration. The decreases in other metals reflect global decreases in anthropogenic emissions of
these elements (AMAP 1998).

Subspecies Differences

Significant differences between subspecies occurred in only two contaminants, p,p’-DDE and
dieldrin, which were greater and lower, respectively, in F. p. anatum compared to F. p. tundrius from
1979-95. These opposite patterns are surprising because concentrations of lipophilic OCs are often
positively correlated. Differential exposures, caused by differences in contaminant use patterns in
migrating, wintering, or breeding areas, may account for this difference. Band recoveries
demonstrate that migration routes and wintering areas of the subspecies overlap, with southward
migration across a broad front throughout the middle latitudes, and wintering areas from the southern
United States south to Brazil and Argentina (U.S. Fish and Wildlife Service, unpubl. data).

However, in Alaska, the subspecies are separated during breeding, with F. p. anatum nesting south of
the Brooks Range and F. p. tundrius nesting north. While OCs do accumulate in migratory birds in
wintering areas (Henny et al. 1982, Peakall et al. 1975), the subspecies’ similar migration routes and
wintering areas contrasted with different breeding areas suggest that differential patterns in p,p-DDE
and dieldrin may be a result of exposures after arrival on the breeding grounds. Environmental
residues of DDT and other OCs have been associated with human population centers and military
lands south of the Brooks Range (Harding Lawson Associates 1997). Although there was also
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documented DDT use at Umiat in the 1950's by the Navy (Reed 1958), DDE concentrations are no
greater in peregrine eggs from Colville River nests downstream from Umiat compared to upstream
(two factor ANOVA with year and location on the Colville as factors and p,p’-DDE concentrations
as response variable; F | ,, = 0.038, P = 0.847). Differential dieldrin use patterns in the breeding
areas are not known.

In addition to pesticide use patterns, differences in breeding area habitats and diets may also explain
differences in contaminant concentrations between subspecies. Although both subspecies consume
mainly migratory avian prey, dietary studies showed that the boreal-dwelling F. p. anatum fed more
upon waterfowl and less upon shorebirds than the tundra-dwelling F. p. tundrius (Cade et al. 1968,
White and Cade 1971). Johnstone et al. (1996) measured OC residues in prey species for F. p.
tundrius in northern Canada, and found waterfowl, specifically long-tailed ducks (oldsquaws)
(Clangula hyemalis), to be among the most contaminated. The high proportion of waterfowl in the
diet of F. p. anatum in Alaska may therefore explain generally greater OC contaminant
concentrations in this subspecies. Organochlorine contaminants were measured in Alaska in 1984 in
pooled whole-body samples (n = 7 to11) of 20 species of peregrine prey collected in breeding areas
of F. p. tundrius (Colville River) and F. p. anatum (Tanana and Yukon rivers), including passerines
(e.g., American robins Turdus migratorius and white-crowned sparrows Zonotrichia leucophrys) and
shorebirds (e.g., spotted sandpipers Actitus macularia and American golden plover Pluvialis
dominica) (U.S. Fish and Wildlife Service, unpubl. data). Although data were too few to analyze
statistically, prey from the breeding range of F. p. anatum had generally greater DDE concentrations
than prey from the breeding range of F. p. tundrius (Fig. 9a), which helps explain higher p,p’-DDE
concentrations in F. p. anatum. However, dieldrin was detected only in shorebirds, and
concentrations between the subspecies’ prey were comparable, so the greater reliance upon
shorebirds by F. p. tundrius may account for the greater dieldrin concentrations found in that
subspecies (Fig. 9b).
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Figure 9. p,p’-DDE and dieldrin concentrations in peregrine falcon prey items collected
from the breeding ranges of Falco peregrinus anatum (Tanana and Yukon rivers) and of F. p.
tundrius (Colville River) in Alaska, 1984. Concentrations were measured in whole body
(minus feathers, beak, feet, and digestive tract) pooled samples of 7-11 birds/species, and 4-9
species/category (shorebirds and non-shorebirds).

Effects on Breeding Success

We found greater mean concentrations of many contaminants (dieldrin, oxychlordane, total PCBs,
copper, iron, and mercury) in F. p. anatum eggs from unsuccessful nests compared to eggs from
successful nests. Although there were only two statistically significant differences between the
subspecies in single contaminants (p,p’-DDE and dieldrin), F. p. anatum in general, and especially F.
p. anatum eggs from unsuccessful nests, routinely had the highest contaminant concentrations (Fig.
5, Fig. 6). The cumulative effects of multiple contaminants may result in diminished success for F.
p. anatum, therefore, and are indicated by the highly significant multivariate statistics for F. p.
anatum in this analysis, compared to F. p. tundrius, which had no differences in concentrations
between successful and unsuccessful nests (Table 6, 8). For all contaminants except mercury, the
greatest differences between successful and unsuccessful nests occurred in earlier time periods, thus
reflecting decreasing contaminant effects over time (Fig. 5b, d, and e; Fig. 6a, b). For mercury,
however, the difference between unsuccessful and successful nests may be increasing with time (Fig.
6d). There were differences in some metals, but the patterns were not consistent and merit further
investigation.

Mercury concentrations were significantly greater in eggs from unsuccessful F. p. anatum nests, and
did not decline during our study (1988-95). Further, mercury was the only contaminant of concern
that exceeded published thresholds for reproductive impairment in the most recent time period (1991-
95), and had increasing percentages of threshold exceedances over time. Because mercury is toxic,
persistent, and increasing in biota worldwide, it will continue to be a contaminant of concern for
peregrine falcons in Alaska.
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While only one contaminant exceeded published effect levels or thresholds for individual
contaminants, multivariate analysis associated contaminant concentrations with lowered nest success.
Strict utilization of threshold values is relatively ineffective in detecting effects of multiple,
sometimes correlated, toxic contaminants on productivity or other population parameters. Further, it
may be impossible to derive strict thresholds or effect levels when multiple contaminants are
involved. Multivariate analysis can identify cumulative contaminant effects on population
parameters; thresholds are useful to identify or corroborate whether particular contaminants are of
concern. Both methods should be used, whenever possible, to study effects of environmental
contaminants in avian populations.

Eggshell Thickness

Following trends identified in Ambrose et al. (1988a), eggshell thickness increased slightly, though
not significantly, and p,p’-DDE concentrations in eggs declined significantly over time. Further,
eggshell thinning was below the critical thresholds of 17% (Peakall and Kiff 1988) or 18% (Hickey
and Anderson 1968) associated with peregrine population declines. However, peregrine eggshells
were still thinner by 10-12% in 1991-95 compared to pre-DDT era eggs, reflecting the continued
presence of p,p’-DDE and the parent compound DDT in peregrine eggs. The significant decrease in
DDE but a non-significant increase in eggshell thickness corresponds with the concept of a semi-
logarithmic relationship between DDE concentrations and eggshell thickness (Henny et al. 1984).

Eggshell thickness in our study was not related to time of collection (addled or fresh) or nest success,
in contrast to F. p. tundrius at Rankin Inlet, Northwest Territories, Canada, which had differences in
thickness between addled eggs collected from 1981-85 and “storm-killed” (presumably non-addled)
eggs collected in 1986, and significantly lower eggshell thickness at failed compared to successful
nests from 1981-86 (Court et al. 1990). During the same time (1979-84 for Alaska, 1981-86 for
Rankin Inlet), average eggshell thickness and geometric mean p,p’-DDE concentrations were similar
(14% of pre-1947 thickness, and 9.3 mg/kg, adjusted ww for Alaska F. p. tundrius; 16% of pre-1947
thickness, and 7.59 mg/kg, ww for Rankin Inlet). However, conclusions of no difference in our study
were based on a longer overall time span (1979-95), and we collected fresh eggs only after p,p’-DDE
concentrations decreased significantly (Fig. 1). Because OC concentrations tend to be correlated in
egg contents (Court et al. 1990), in early years with relatively high p,p’-DDE and other OC
contaminant concentrations, thinner eggshells may have been found in addled eggs. The cumulative
effects of the entire suite of contaminants may be important, since Court et al. (1990) found no
difference in p,p’-DDE concentrations (as opposed to eggshell thickness) between addled and
“storm-killed” eggs.

Known Females

We found no significant relationships between female age and contaminant concentration or eggshell
thickness. Burnham et al. (1984) also found that eggshell thickness (for the first clutch in a breeding
year) did not change with age of female. We did find, however, that concentrations in the eggs of the
five females sampled twice in our study followed the general downward trend of the population,
although with considerable individual variation. Jarman et al. (1994), using plasma, also reported
considerable variation in DDT and PCB concentrations among females, but did not detect any clear
time trends with respect to residues, either for individuals sampled twice or for the population as a
whole for the period 1984-89 (a shorter time period than our study). Our data from females with
known wintering locations, although sparse, further indicate that there is high individual variation
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among females. Combined with low intra-clutch variation, this suggests that the appropriate sample
unit is the female or nest, rather than the egg.

Recommendations for Contaminant Monitoring

The primary cause of the decline of peregrine falcons was the use of organochlorine pesticides, and
other environmental contaminants have the potential to negatively influence this species. Therefore,
we recommend that population monitoring programs for this species include contaminant monitoring.
Early detection and trend monitoring for harmful contaminants may help prevent drastic declines
such as those witnessed in the 1950s and 1960s. The mercury trends we observed in peregrines in
Alaska speak for monitoring new and emerging contaminants of concern, since peregrines as top
predators remain vulnerable to persistent and bioaccumulative compounds. Organo-mercury, not
total mercury, should be analyzed since toxic effects are generally associated with those bioavailable
compounds. Additionally, measurement of PCB congeners rather than, or in addition to, total PCBs
will delineate the toxic effects of PCBs.

Given that intra-clutch variation was much less than inter-clutch variation in this study and others
(e.g., Newton et al. 1989), we recommend that contaminant monitoring programs include samples
from several different females rather than whole clutches from few females. Identical methodology
for eggshell thickness measurements, such as minimizing use of fragments, will standardize
monitoring of this contaminant effect. Both the interval of egg collection and the number of eggs
collected will depend upon specific contamination or population viability issues within populations
or regions. For Alaska, a 3- to 5-year monitoring interval, which in this study showed significant
decreases in contaminant concentrations, should provide cost-effective monitoring of identified
contaminant threats while allowing timely assessment of new threats, such as mercury. Other regions
may require more frequent monitoring. Power analysis, using estimates of variation from recent
contaminant data, can suggest appropriate sample sizes.

A major issue for contaminant monitoring using avian eggs is whether to collect fresh, potentially
viable eggs during incubation or to wait and collect addled eggs, usually during banding nest visits
(note that the distinction between “fresh” and “addled” may be arbitrary, because at the time of
collection it is unknown whether a fresh egg will fail to hatch). If there is no discernible effect on
productivity, and if contaminant concentrations in fresh and addled eggs are similar, collection of
fresh eggs is desirable from a monitoring viewpoint because adequate sample size can be assured,
and known females or territories can be targeted. To address the concern of potential effects on
productivity, we compared the number of chicks per pair (at banding) between nests where fresh eggs
were taken and all other nests (including those with addled eggs) from 1984, 1989, and 1995, and
found no significant difference (Table 9). To account for any bias associated with not collecting
fresh eggs from nests with only one or two eggs, which may have occurred for F. p. tundrius in some
years, we also compared percent of eggs resulting in fledglings between nests where fresh eggs were
taken and all other nests, in 1984, 1989, and 1995 (for the subset of nests with clutch size data), and
again found no significant difference (Table 10).
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Table 9. Productivity (mean chicks per pair) of peregrine falcons from Alaska at nests with a fresh
egg taken for contaminants analysis compared to productivity at nests with no fresh egg taken. There
was no significant difference in productivity (Mann-Whitney U-test). Standard errors are presented
for comparison purposes only. Subspecies were analyzed separately.

Mean (SE)
number of chicks U statistic
at banding P-value
American subspecies (F. p. anatum)
Nests with fresh egg removed (n = 22) 2.0(0.2) U=1292.0
P=0.453
Other nests (n = 130) 1.7 (0.1)
Arctic subspecies (F. p. tundrius)
Nests with fresh egg removed (n = 24) 1.7 (0.2) U=1133.5
P=0.133
Other nests (n = 116) 1.3 (0.1)

Table 10. Average percent of eggs per nest resulting in fledglings from peregrine falcon nests with a
fresh egg taken for contaminants analysis compared to nests with no fresh egg taken, from Alaska.
There was no significant difference in the percent of eggs per nest resulting in fledglings (Mann-
Whitney U-test). Subspecies were analyzed separately.

Average percent

of eggs resulting U statistic
in fledglings P-value
American subspecies (F. p. anatum)
Nests with fresh egg removed (n = 22) 54.5 U=169.5
P=0.424
Other nests (n = 18) 40.3
Arctic subspecies (F. p. tundrius)
Nests with fresh egg removed (n = 24) 43.9 U=3375
P=0.792
Other nests (n = 32) 41.9
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Collection of addled eggs only might result in upwardly biased contaminant estimates for a
population, which can be viewed as either highly or overly protective. However, we found no
differences between fresh and addled peregrine eggs in OC concentrations, similar to Court et al.
(1990), comparing DDE in addled and “storm-killed” eggs, and Peakall et al. (1990) reviewing
peregrine contaminants data from Canada, 1965-87. We found significantly lower iron and zinc
concentrations in addled eggs, indicating that excess metals were not associated with hatch failure,
and the toxicological importance of greater magnesium concentrations in addled F. p. anatum eggs is
unknown. Magnesium, iron, and zinc are all essential elements, so they would be expected to be
closely regulated in egg contents, although females can reduce toxic levels of essential elements into
eggs (Eisler 1993) or eggshells (Dauwe et al. 1999). Dauwe et al. (1999), however, did not find
differences in zinc and copper in passerine eggs from polluted and reference sites, “...indicating that
copper and zinc concentrations are homeostatically controlled in the egg content” (Dauwe et al.
1999:445).

Since we found no decrease in productivity associated with removal of a fresh egg and found few
differences in contaminant concentrations between fresh and addled eggs, we conclude that either
sample type is adequate for general contaminant monitoring in peregrine falcons. Fresh eggs may be
desirable since the uncertainty associated with finding and collecting fresh eggs is less than that of
collecting addled eggs. However, addled egg collection may be desirable for populations where
collection of even one fresh egg that might have hatched would result in unacceptably reduced
productivity, and addled eggs may have greater contaminant concentrations in populations severely
affected by embryotoxic contamination (Peakall et al. 1990, Henny et al. 1994). We also suggest that
description of embryo development should be routinely performed on all eggs taken, regardless of the
timing, to gain more accurate information about contaminant effects on egg viability.
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Appendix C. Summary statistics for environmental contaminants detected in > 50% but < 90% of
peregrine falcon eggs from Alaska, 1988-95. Organochlorines were adjusted for changes associated with
development (Stickel et al. 1973), and presented in mg/kg wet weight. Metals data were not adjusted, and
presented in mg/kg dry weight. Geometric means were calculated with data less than the lower limit of
detection substituted at half the detection limit.

Geometric mean (range)
Percent of detections (number detected/number
analyzed)

American peregrine falcon  Arctic peregrine falcon

Analyte (F. p. anatum) (F. p. tundrius)
beta-BHC 0.03 (nd ' - 0.39) 0.03 (nd - 0.50)
81.0 (47/58) 81.6 (40/49)
p,p’-DDD 0.02 (nd - 0.43) 0.02 (nd - 2.58)
62.1 (36/58) 51.0 (25/49)
p,p’-DDT 0.02 (nd - 0.30) 0.02 (nd - 0.35)
62.1 (36/58) 51.0 (25/49)
HCB 0.03 (nd - 1.02) 0.02 (nd - 1.28)
72.4 (42/58) 77.6 (38/49)
Mirex 0.13 (0.02 - 0.54) 0.13 (0.03 - 0.53)

trans-nonachlor

100 (58/58)

0.02 (nd - 0.21)
84.5 (49/58)

100 (49/49)

0.03 (nd - 0.13)
93.9 (46/49)

Mangenese 0.8 (nd - 3.7) 0.8 (nd -2.9)
69.8 (37/53) 69.0 (29/42)
Selenium 2.5(0.8-4.5) 23(1.6-2.9)
100 (37/37) 100 (32/32)
Strontium 0.7 (nd - 2.7) 0.9 (nd - 2.8)
73.6 (39/53) 88.1(37/42)
Tin 9.2 (nd - 15.0) 4.7 (nd - 10.8)
85.7 (6/7) 50.0 (2/4)

' nd = Not detected at detection limit of 0.01 mg/kg wet weight for organochlorines; and 0.55,
0.3, 0.5, and 5.0 mg/kg dry weight for manganese, selenium, strontium, and tin, respectively.
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Appendix D. Percent detections for analytes detected in < 50% of peregrine egg samples from Alaska,
1988-95. Detection limit for OCs was 0.01 mg/kg wet weight and metal detection limits were the highest
of the variable detection limits for these years (Appendix A).

Percent of Detections (number detected/number analyzed)

Arctic subspecies
(F. p. tundrius)

Analyte American subspecies
(F. p. anatum)

alpha-BHC 1.7 (1/58) 0.0 (0/49)
gamma-BHC 1.7 (1/58) 0.0 (0/49)
alpha-chlordane 0.0 (0/58) 4.1 (2/49)
gamma-chlordane 3.4 (2/58) 0.0 (0/49)
o,p’-DDD 13.8 (8/58) 8.2 (4/49)
o,p’-DDE 1.7 (1/58) 0.0 (0/49)
o,p’-DDT 19.0 (11/58) 16.3 (8/49)
endosulfan II 0.0 (0/21) 0.0 (0/13)
endrin 0.0 (0/58) 4.1 (2/49)
Aluminum 15.8 (6/38) 21.7(5/23)
Barium 3.8 (2/53) 4.8(2/42)
Beryllium 0.0 (0/53) 4.8(2/42)
Boron 18.9 (10/53) 26.2(11/42)
Cadmium 1.9 (1/53) 2.4(1/42)
Chromium 15.1 (8/53) 4.8(2/42)
Lead 0.0 (0/44) 2.8(1/36)
Molybdenum 1.9 (1/53) 2.4(1/42)
Nickel 13.2 (7/53) 9.5(4/42)
Vanadium 1.9 (1/53) 0.0(0/42)
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